Table	1. Frac	tional	atomic	coordinates	and	equiva	ler
	isotro	pic dis	placem	ent paramete	ers (Å	²)	

$B_{\rm eq} = (4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i . \mathbf{a}_j.$

	x	у	Z	B_{eq}
O(1)	0.6350(2)	-0.3605 (2)	0.8980 (2)	4.10 (5)
O(2)	0.4832 (2)	0.0647 (2)	0.7128 (2)	4.23 (6)
O(3)	0.1272 (2)	0.1550 (2)	0.8365(1)	2.74 (4)
O(4)	0.0337 (2)	0.6269 (2)	0.7431 (2)	4.64 (6)
O(5)	-0.1667 (3)	0.8214 (2)	0.6337 (2)	6.39 (8)
N(1)	-0.0891(2)	0.6736(2)	0.6770 (2)	3.80 (6)
C(1)	0.5480(2)	-0.2948(2)	0.9744 (2)	2.95 (7)
C(2)	0.5679 (3)	-0.3749 (3)	1.1233 (2)	3.53 (7)
C(3)	0.4229 (3)	-0.0553(2)	0.7683 (2)	3.01 (7)
C(4)	0.3476 (4)	-0.1297(3)	0.6925 (2)	4.86 (10)
C(5)	0.4205 (2)	-0.1344(2)	0.9191 (2)	2.56 (6)
C(6)	0.3175 (2)	-0.0639(2)	1.0004 (2)	2.72 (6)
C(7)	0.1810 (2)	0.0842 (2)	0.9662 (2)	2.72 (6)
C(8)	0.0908 (3)	0.1765 (3)	1.0404 (2)	3.02(7)
C(9)	-0.0244(3)	0.3122 (3)	0.9549 (2)	3.18 (7)
C(10)	0.0011 (2)	0.2954 (2)	0.8332 (2)	2.69 (6)
C(11)	-0.0902(2)	0.3763 (3)	0.7085(2)	2.79 (6)
C(12)	0.1458 (3)	0.5509 (3)	0.6423 (2)	3.16 (6)
C(13)	-0.2463 (3)	0.6169 (3)	0.5327 (2)	4.03 (8)
C(14)	-0.2909 (3)	0.5085 (4)	0.4860 (2)	4.71 (9)
C(15)	-0.2373 (3)	0.3361 (4)	0.5476(2)	4.47 (9)
C(16)	-0.1374(3)	0.2711(3)	0.6574(2)	3.66 (8)

Table 2. Selected bond distances (Å) and angles (°)

O(1) - C(1)	1.209 (3)	N(1)—C(12)	1.456 (3)
O(2)—C(3)	1.195 (3)	C(1)—C(2)	1.487 (3)
O(3)—C(7)	1.369 (2)	C(1)—C(5)	1.469 (3)
O(3)—C(10)	1.364 (3)	C(3)—C(4)	1.489 (4)
O(4)—N(1)	1.204 (3)	C(3)—C(5)	1.490 (3)
O(5)—N(1)	1.212 (3)	C(10)—C(11)	1.455 (3)
C(7)—O(3)—C(10)	105.7 (1)	O(1)—C(1)—C(2)	120.8 (2)
O(4)N(1)O(5)	122.6 (2)	C(2)-C(1)-C(5)	119.7 (2)
O(5) - N(1) - C(12)	117.5 (2)	O(2)—C(3)—C(5)	119.6 (2)
O(4) - N(1) - C(12)	119.8 (2)	O(2)-C(3)-C(4)	122.4 (2)

Data reduction was performed with the program $XP2_1$ (Pavelčík, 1987). The structure was solved by direct methods and refinement was by block-diagonal least squares. H atoms were found from difference Fourier maps and their coordinates and displacement parameters were fixed. Calculations were performed with a local version of the *NRC* system (Ahmed, Hall, Pippy & Huber, 1973) and *PARST* (Nardelli, 1984).

This research was supported financially by the Ministry of Science and Education.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the IUCr (Reference: KA1054). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Ahmed, F. R., Hall, S. R., Pippy, M. E. & Huber, C. P. (1973). NRC Crystallographic Programs for the IBM360 System. Accession Nos. 133–147. J. Appl. Cryst. 6, 309–346.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Krutošíková, A., Kováč, J., Frimm, R., Kováč, Š. & Sticzay, T. (1971). Chem. Pap. 25, 142-145.
- Kusá, A., Polynova, T. N., Poray-Koshits, M. A. & Jurášek, A. (1979). Zh. Strukt. Khim. 20, 559-561.

- nt Kusá, A., Polynova, T. N., Poray-Koshits, M. A. & Kováč, J. (1979). Dokl. Akad. Nauk SSSR Ser. Khim. 245, 397-400.
 - Kusá, A., Polynova, T. N., Poray-Koshits, M. A., Kováč, J. & Végh, D. (1979). Zh. Strukt. Khim. 20, 556–559, 561–565.
 - Lokaj, J., Vrábel, V., Sivý, J., Ilavský, D. & Koreňová, A. (1994). Acta Cryst. C50, 1312–1314.
 - Nardelli, M. (1983). Comput. Chem. 7, 95-98.

Pavelčík, F. (1987). XP21. Comenius Univ., Bratislava, Slovakia.

Acta Cryst. (1994). C50, 1779-1781

Enantioselective Synthesis of Isoquinoline Alkaloids from Simple Sugar. II. Structure of 1-(6,7-Dimethoxy-3,4-dihydroisoquinolin-1-yl)-1,2,3,4-butanetetrayl Tetraacetate *N*-Oxide

ZBIGNIEW CZARNOCKI

University of Warsaw, Department of Chemistry, 02-093 Warsaw, Poland

JAN K. MAURIN

Institute of Atomic Energy, Solid State Physics Department, 05-400 Otwock-Świerk, Poland

MAŁGORZATA WINNICKA-MAURIN

Agricultural University of Warsaw, Institute of Chemistry, Warsaw, Poland

(Received 2 February 1994; accepted 21 March 1994)

Abstract

The title compound, $C_{23}H_{29}NO_{11}$, is an important intermediate product in the course of the synthesis of some natural products. Among them are two isoquinoline alkaloids: (*R*)-calycotomine and (*S*)-xylopinine. A singlecrystal X-ray study of this compound is reported.

Comment

In the course of our work on the development of an efficient enantioselective synthetic strategy for isoquinoline alkaloids, we described a procedure in which the chiral substrate p-ribonic acid γ -lactone (1) was used (Czarnocki, 1992*a*,*b*). In several steps, compound (1) was transformed into 6,7-dimethoxy-3,4dihydroisoquinolin-1-yl-(1',2',3',4'-tetraacetoxy)butane (2) (Czarnocki, 1992*a*,*b*, and references therein). Subsequent oxidation of (2) with *m*-chloroperbenzoic acid gave 1-(6,7-dimethoxy-1,2,3,4-tetrahydro-1,2-epoxyisoquinolinyl)-1,2,3,4-butanetetrayl tetraacetate (3) (Czarnocki & Maurin, 1993) and the title compound (4), from which two isoquinoline alkaloids, (R)-(-)calycotomine and (S)-(-)-xylopinine, were prepared. The full reaction scheme has been given by Czarnocki (1992a.b).

The molecular geometry and numbering scheme are shown in Fig. 1. The C5-C10 ring is planar. The atoms O2, O3 and $\overline{C4}$, which are bonded to the ring, are almost coplanar with it whereas C1 lies 0.075 (5) Å out of the plane of the ring. The O3-C12 methoxy group lies in the plane of the ring whereas the O2-C11 methoxy group is rotated by about 7° around the C6-O2 bond. The conformation of the second ring and the relative configuration on the important chiral atoms C1 and C1' are defined by the series of torsion angles given in Table 2.

Fig. 1. Molecular geometry and the numbering scheme for the title compound. Displacement ellipsoids are plotted at the 50% probability level.

Experimental

Full experimental and spectroscopic data concerning the synthesis of the title compound have been described previously (Czarnocki, 1992b). The compound was purified by column chromatography and then crystallized from ethanol and from ethanol/hexane solution. Crystals suitable for X-ray experiments were obtained by slow evaporation of the solvents. The melting point was found to be 413-414 K.

Crystal data

C ₂₃ H ₂₉ NO ₁₁	Cu $K\alpha$ radiation
$M_r = 495.48$	$\lambda = 1.5418$ Å

Monoclinic

 $P2_1$ a = 12.923 (2) Å b = 7.5697 (11) Å c = 13.743 (2) Å $\beta = 113.749 (12)^{\circ}$ V = 1230.6 (3) Å³ Z = 2 $D_{\rm x} = 1.340 {\rm Mg} {\rm m}^{-3}$ Data collection

KM-4 κ -axis diffractometer Profile data from ω/θ scans Absorption correction: none 2607 measured reflections 2515 independent reflections 2372 observed reflections $[l > 2\sigma(l)]$ $R_{\rm int} = 0.029$

Refinement

C2' C3'

Refinement on F^2 Extinction correction: R = 0.052SHELXL93 (Sheldrick, $wR(F^2) = 0.144$ 1994) S = 1.043Extinction coefficient: 2515 reflections 0.0111 (16) 346 parameters Atomic scattering factors Only H-atom U's refined from International Tables $w = 1/[\sigma^2(F_o^2) + (0.1120P)^2]$ for Crystallography (1992, + 0.2155PVol. C, Tables 4.2.6.8 and where $P = (F_o^2 + 2F_c^2)/3$ 6.1.1.4) Absolute configuration: $(\Delta/\sigma)_{\rm max} = 0.004$ $\Delta \rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^{-3}$ Flack (1983) $\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$

Cell parameters from 25

reflections

 $\mu = 0.911 \text{ mm}^{-1}$

Transparent column

 $0.8 \times 0.5 \times 0.2$ mm

T = 293 (2) K

 $\theta = 20 - 21^{\circ}$

Pale yellow

 $\theta_{\rm max} = 72.04^{\circ}$

 $l = -16 \rightarrow 14$

2 standard reflections

reflections

monitored every 100

intensity variation: none

 $h = 0 \rightarrow 15$

 $k = 0 \rightarrow 9$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	Z	U_{eq}
01	-0.0394 (2)	0.4645	0.1570(2)	0.0769 (9)
02	0.2970 (2)	0.5298 (8)	0.7598 (2)	0.0708 (8)
O3	0.4292 (2)	0.4359 (7)	0.6689 (2)	0.0588 (7)
04	0.2244 (2)	0.1612 (6)	0.3345 (2)	0.0424 (4)
05	0.1825 (2)	0.4889 (6)	0.1319 (2)	0.0530 (6)
06	0.4144 (2)	0.3637 (7)	0.1905 (2)	0.0539 (6)
07	0.3345 (3)	0.0159 (7)	0.1034 (2)	0.0701 (7)
08	0.0613 (2)	0.0336 (7)	0.3133 (3)	0.0747 (8)
09	0.2005 (3)	0.7434 (7)	0.2196 (2)	0.0816 (9)
O10	0.5053 (2)	0.3780 (8)	0.3669 (2)	0.0767 (9)
011	0.3378 (4)	0.1037 (9)	-0.0507 (3)	0.1056 (14)
Cl	0.1075 (2)	0.4191 (7)	0.3182 (2)	0.0425 (6)
N	0.0091 (2)	0.4862 (7)	0.2586 (2)	0.0523 (7)
C3	-0.0519 (3)	0.5998 (8)	0.3051 (3)	0.0545 (8)
C4	-0.0361 (2)	0.5348 (8)	0.4139 (3)	0.0524 (8)
C5	0.1319 (3)	0.5349 (7)	0.5908 (2)	0.0496 (7)
C6	0.2466 (3)	0.5090 (7)	0.6524 (2)	0.0513 (7)
C7	0.3179 (2)	0.4589 (7)	0.6027 (2)	0.0461 (7)
C8	0.2740 (2)	0.4315 (7)	0.4945 (2)	0.0432 (6)
C9	0.1572 (2)	0.4548 (7)	0.4324 (2)	0.0404 (6)
C10	0.0879 (2)	0.5087 (7)	0.4818 (2)	0.0442(6)
C11	0.2271 (4)	0.5609 (11)	0.8150(3)	0.088 (2)
C12	0.5038 (3)	0.3869 (9)	0.6224 (3)	0.0627 (10)
C1'	0.1622 (2)	0.3014 (7)	0.2633 (2)	0.0434 (6)
C2′	0.2475 (2)	0.3968 (7)	0.2286 (2)	0.0441 (7)
C3′	0.3243 (2)	0.2679 (7)	0.2034 (2)	0.0482 (7)

CA!	0.2640 (2)	0 1 (27)	(0)	0.1021.(2)	0.0(00.0)
C4	0.2040 (3)	0.1037 ((8)	0.1031 (3)	0.0609 (9)
C13	0.1624 (3)	0.0354 ((7)	0.3563 (3)	0.0498 (7)
C14	0.2347 (3)	-0.0878 ((8)	0.4376 (3)	0.0627 (9)
C15	0.1617 (3)	0.6619 (7)	0.1388 (3)	0.0550(8)
C16	0.0844 (4)	0 7310 0	9)	0.0334 (4)	0.0874 (15)
C17	0 5048 (3)	0 4028 (8)	0.3816(3)	0.0574 (8)
C19	0.5046 (3)	0.4020	10)	0.2610 (3)	0.037 + (8)
	0.3990 (3)	0.4/9/ (10)	0.2590 (4)	0.0775 (13)
C19	0.3693 (3)	0.0051 (9)	0.0249 (3)	0.0655 (10)
C20	0.4488 (5)	-0.1443 (12)	0.0426 (5)	0.105 (2)
Tab	nle 2 Sela	ected acom	otric n	aramotors	(Å °)
140	<i>ne 2. ben</i>	cicu geom	en ic p	urumeters	(A,)
01—N		1.290 (3)	C1C	9	1.462 (4)
O2—C6		1.361 (4)	C1C	1'	1.514 (4)
02-C11		1 413 (5)	N3		1 474 (4)
03 C7		1 260 (2)		4	1.509 (5)
03-01		1.309 (3)	<u> </u>	4	1.508 (5)
03-012		1.403 (4)	C4-C	10	1.507 (4)
04—C13		1.353 (4)	C5C	10	1.386 (4)
04—C1′		1.447 (4)	C5—C	6	1.394 (4)
O5-C15		1.348 (5)	C6C	7	1.402 (4)
O5-C2'		1.434 (3)	C7-C	8	1.377 (4)
06-C17		1 358 (4)	<u> </u>	Ő.	1 414 (4)
06 C2/		1.330 (4)	C0-C	2	1.714 (4)
00-03		1.445 (4)	(9-(10	1.380 (4)
0/		1.329 (5)			1.545 (4)
07—C4′		1.441 (5)	C2'(23'	1.527 (4)
O8—C13		1.198 (4)	C3'-(C4'	1.505 (5)
09—C15		1.190 (5)	C13-4	C14	1.466 (5)
O10-C17		1.185 (4)	C15-4	C16	1,484 (5)
011		1 208 (6)	C17-4	C18	1 497 (5)
C1N		1 307 (4)	C10_	C20	1 480 (7)
		1.507 (4)	017	020	1.400 (7)
C6-02-C	:11	118.1 (3)	C5C	10—C9	120.4 (3)
C7—O3—C	12	117.5 (2)	C5—C	10—C4	121.5 (3)
C13-04-	C1′	116.7 (2)	C9—C	10—C4	118.1 (3)
C15-05-	C2′	117.8 (3)	04—C	1'—C1	109.8 (2)
C17-06-	C3′	115.7 (2)	04—C	1'—C2'	106.3 (2)
C19-07-	C4'	117.7 (4)	CI-C	1' - C2'	1144(3)
N-CI-C)	1197(3)	05-0	2' - C''	1070(2)
	,	119.7(3)	05-0	$2 - C_{3}$	107.0 (2)
	17	10.7 (3)	03-0	2 - 1	100.8 (2)
	1	123.0 (2)			112.4 (3)
		123.7 (3)	06-0	3'	107.2 (2)
OI-N-C	5	115.6 (2)	06-0	3'-C2'	109.7 (3)
CI-N-C3		120.7 (3)	C4' —(.'3' —C2'	113.5 (3)
N-C3-C4	ļ	110.9 (3)	07—C	4′—C3′	108.1 (3)
C10-C4-	C3	110.0 (2)	08—C	13—04	121.6 (3)
C10C5	C6	120.7 (3)	08—C	13—C14	127.0 (3)
02-C6-C	5	124.7 (3)	04—C	13—C14	111.4 (3)
02-C6-C	7	116.0 (3)	09-0	15-05	123 2 (3)
C5-C6-C	7	1193(3)	09-0	15-C16	1264(4)
03-07-0	'8	124 4 (3)	05_0	15 C16	110.4(4)
03 C7 C	.0 '6	124.4(3)	00-0		10.4 (4)
	.0 	120.0 (3)		C17 - C10	122.5 (5)
	0	120.0 (2)			126.1 (3)
U/L8L	9	120.6 (3)	06-0	1/	111.4 (3)
C10-C9-	C8	119.0 (2)	011-0	C19—07	123.6 (4)
C10-C9-	CI	119.3 (2)	011	C19—C20	125.7 (4)
C8C9C	1	121.7 (2)	07—C	19—C20	110.7 (5)
C9C1N	-01	178 4 (3)	C6—C	5	179.6 (3)
		-37(5)			176.8 (3)
		- 5.7 (5)		3 - C10 - C1	170.8 (3)
		0.9 (3)		-10 - 10	1/9.3 (3)
	<u> </u>	1/8.9(3)		y-010-04	- 2.3 (5)
01-N-C3		145.0 (3)	<u> </u>	4-CI0-CS	147.9 (3)
CI-N-C3		-37.3 (5)	C3-C	4-C10-C9	-33.0 (4)
NC3C4	C10	51.2 (4)	N-C1	C1'04	-145.3 (3)
C7—C8—C	9—C1	-177.3 (3)	С9—С	1—C1′—O4	32.5 (4)
N-C1-C9	-C10	20.5 (5)	N—Ci	-C1'-C2'	95.3 (3)
C1'-C1-C	C9-C10	-157.3 (3)	С9—С	1-C1'-C2'	-86.8 (3)
N-C1-C9		- 161.1 (3)	C1-C	1'-C2'-05	-79.4 (3)
C1'-C1-C	С9—С8	21.1 (5)	CI-C	1'-C2'-C3'	163.6 (2)

Data collection, cell refinement and data reduction were performed using Kuma diffractometer software. The (0kl) reflections were used for the calculation of R_{int} . The structure was solved using *SHELXS*86 (Sheldrick, 1990) and refined using *SHELXL*93 (Sheldrick, 1994). The H atoms were positioned according to geometric criteria. The Flack parameter [-0.1 (3)] and former experimental evidence indicated that the choice of absolute configuration was correct. Molecular graphics were prepared using *ORTEPII* (Johnson, 1976).

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1162). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Czarnocki, Z. (1992a). J. Chem. Res. (S), pp. 334-335.
- Czarnocki, Z. (1992b). J. Chem. Res. (M), pp. 2801-2819.
- Czarnocki, Z. & Maurin, J. K. (1993). Acta Cryst. C49, 1992-1994.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1994). J. Appl. Cryst. In preparation.

Acta Cryst. (1994). C50, 1781-1784

Two Heterocyclic 1,2,4,5-Tetrazines

MOU-YUNG YEH AND CHUN-YIN HUANG

Department of Chemistry, National Cheng Kung University, Tainan, Taiwan

CHUEN-HER UENG

Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan

YU WANG

Department of Chemistry, National Taiwan University, Taipei, Taiwan

(Received 31 March 1992; accepted 20 February 1994)

Abstract

The title compounds, 6-bromo-1,4-dihydro-1,4-di(o-tolyl)-1,2,4,5-tetrazin-3(2H)-one, C₁₆H₁₅BrN₄O, and 3,6-dibromo-1,4-dihydro-1,4-bis(p-methoxyphenyl)-1,2,4,5-tetrazine, C₁₆H₁₄Br₂N₄O₂, were prepared from 4-bromo-3-(o-tolyl)sydnone and 4-bromo-3-(p-methoxyphenyl)sydnone, respectively, in thf under ultrasonic irradiation, and identified with IR, ¹H NMR, mass spectrum and elemental analyses. The heterocyclic rings of both title compounds appear to lack aromatic character, as judged from the bond lengths.